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Abstract 

We derive new bounds on the Dirac mass of the tau and muonic neutrinos. 

By solving the kinetic equation for the rate of energy deposition due to helicity 

flipping processes and imposing the constraint that the number of effective species 

contributing to the energy density at the time of nucleosynthesis be Ak, < 0.3, 

we find the bounds mvr < 150 I<eV and ~?z,~ < 190 KeV for TQcp = 200 MeV. 

The constraint Ak, < 0.1 leads to the much stronger bound r)x, < 10 IieV for 

both species of neutrinos. 
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If neutrinos are massive and stable, then the mass range 40 eV < ~1, < 2 GeV [l, 21 is 

escluded by measurements of the age of the universe. However, if the neutrinos are unstable 

then these bounds will not apply and we must search elsewhere to find mass restrictions. The 

present laboratory bounds on the muonic and tau neutrino are 160 I<eV[3] and 31 MeV [4] 

respectively. Better bounds may be had if the lifet,ime of the massive neutrino is > 0( 100) 

sec. In this range of lifetimes the energy density due to the massive species may come 

to increase the expansion rate of the universe and thereby increase the primordial helium 

abundance [5]. In this case the mass ranges 0.5 < 171 < 35 MeV and 0.3 < nz < 35 lie\’ were 

found to be excluded for Majorana and Dirac neutrinos respectively [G]. The mass bound for 

Dirac neutrinos was derived assuming t.hat the right, handed species is in thermal equilibrium 

below the QCD phase transition, for 171 > 300 I\;e\i. In this letter we show that even if the 

right handed neutrinos do not enter thermal equilibrium at temperatures below TQC~, their 

out-of-equilibrium production rate is strong enough to yield a much more stringent lower 

bound on the Dirac neutrino mass. 

The rate of production of right handed neutrinos is roughly given by, I”- oc (n-L,/ E)2GsT5 

where E is the energy. of the neutrino and r 1~ is the normal weak interaction rate. Thus, 

the “wrong” helicity states’ are produced more efficient,ly at higher temperatures. If the 

wrong helicity states decouple from thermal equilibrium above TQ~D, their energy density 

will be grea.tly diluted in comparison with the coupled species as a consequence of entropy 

conservation. Such neutrinos would appear to be cosmologically safe. A bound based on the 

decoupling argument was first derived in ref. [s], where it was shown that the Dirac mass 

must satisfy m, < 300 KeV, crssumingA~at &he QCD phase .transition temperature is 100 

MeV. The result of ref. [8], was refined in ref. [i], where a more careful computation of the 

relevant scattering processes was performed and much weaker bounds were claimed. 

In ref. [9] a different bound, t~z,~ < 420 IieV was obtained by considering the out-of- 

equilibrium production of wrong helicity states through the pion resonance yy ---) 7r” + u+fi+, 

and imposing the constraint ,Ik, < 0.3. Unlike the bound discussed first above, this result 

is insensitive to TQ~D, as will be shown below. 

‘In the rest of the paper, when we refer to “wrong” llelicitv states, \ve nlean right handed neutrinos and 
left handed anti-neutrinos. 
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In this letter we give a more accurat,e analysis of the production of light wrong helicity 

st,ates in the early universe. \Ve will account for all sources of wrong helicity neutrinos, 

including the population that decoupled above T’cn as well as those generated from the 

following out,-of-equilibrium processes: 

% O - u/4~)+fiko)+ 
7r+ - I-1+up+ 

ilk? - bI1(T)+ (1) 
zi -+ u/4~)+~~(~)+* 

Moreover, we will accurately solve the kinetic equation for neutrino energy density generated 

out-of-equilibrium at temperatures below the QCD phase transition. Our bounds will be 

both more precise and much stronger than any found in earlier literature. 

We should mention here that strong bounds on the neutrino mass, m, < 10 - 20 I<eV,’ 

were obtained from the consideration of the cooling of supernova SN-87 [lo, 111. While 

these bounds are indeed more stringent than the bounds obtained in this paper, they are in 

a sense model dependent. Supernova bounds come from calculating the rate at which energy 

is drained from the supernova assuming that the right handed neutrinos are sterile and will 

free stream from the core. However, since the right handed neutrinos are singlets, it is quite 

possible that they interact in yet unknown ways [12]. * Furthermore, with better data it 

may be possible that the nucleosynthesis bounds will eventually become more stringent than 

those obtained from supernova considerations. 

We will first consider helicity flipping scatterings vC1tT)--t + v~(~)+!, and annihilations 

zt + ~~(~)+fi~(~)+ where 1 is a lepton (not the tau however) and sub-f refers to the helicity 

of the neutrino. The amplitude for t-channel elastic scattering process is given by 

A( uz; u+l) = GF- zdl - -d+l(cv - c~Y~Y~~ (2) 

‘If the right handed species is trapped inside supernova, thus obviating the bound derived in ref. [lo, 111, 
it would likely contribute to the energy density at the time of nucleosynthesis. To avoid this, physics far 
beyond the standard model is needed [13]. 
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where, for example in vv-scattering cr,, = c.4 = $ and in Ye-scattering CA = 2 sin’ 8rv - f and 

CL,, = .$. The projection onto the wrong helicity state is acconlpli&ed by using 

c u+fi- = ;(y’+ r-&)(1 + y#, (3) 
spins 

where the four-vector s is given by the expression: 
x 

s = -( k’,d’l;;). 
Ill, (4 

Here the helicity eigenvalue X = fl determines the helicity state of final state neutrino, I;’ = 

I/,?1 is the magnitude of the spatial component of the neutrino momentum, w’ = (kr2 + mZ)1/2 

is its energy, and 3 is the unit vector in direction of xl’. 

The amplitude squared for the production of the neutrinos with the wrong helicity in 

elastic scattering is 

IA(uZ; u+i)l* = lGG2,{ (cv f cJ*(p . k)(p’ - I) 

+ (cv F cA>*(p’ . k)(p * 1) - (c’, - c2,)?7$(k * I)} (5)’ 

where p, p’, are the four-momenta of the initial and final fermions, and k, k’ are the momenta 

of the neutrinos V- and V+ respectively. The upper (lower) signs refer to scattering off par- 

ticles (antiparticles) and we defined the four-vector 1 = (w’ - k’)(l, -Z) = (n1~/2k’)(l, -6). 

The amplitude for annihilation process may be obtained from (5) by simple crossing relation. 

One may see that for the scattering off of neutrinos, I-41’ goes like the neutrino mass to the 

fourth power in the center of mass frame. It is because of this seemingly slow rate that these 

processes were neglected in ref. [7]. However, this suppression is not present in an arbitrary 

frame and generically the.production of-the mrong helicity neutrinos is -suppressed only as 

in:. This is a consequence of the fact that the helicity is not a Lorentz invariant quantity. 

Indeed, given a particle with definite negative helicity, a boost in a direction orthogonal to 

its direction of motion with velocity 21 will generate an admixture of the positive helicity 

equal to m’v2/4E2. 

The kinetic equation for the energy density of the right-handed neutrinos has the form 

&L 1 
cEti4Hp, E C, = - 

d”p d”k cl”pl (Pk’ --- 
(27r)” 

-db4(p + k - p’ - k’) x 
2E 2ti 2E’ 2~’ 

x { I~~l’f,b~M(E)[l - hW’)] + . ..} , (6) 
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where the ellipses refer to the remaining elastic scattering (off antiparticles) and annihilation 

chamlels as well as to the contributions from the pion resonances which will be treated 

below. Note that we omitted the Pauli blocking factor for wrong helicity states, which are 

noi in thermal equilibrium. \\:e also neglected the inverse reaction of right-handed neutrinos 

producing the normal ones. This is justified because the density of the wrong neutrinos has 

to be small. For the same reason we can compute a.11 contribut,ions to py separately and add 

the different contributions in the end. 

If we assume that the phase space distribution functions are of the equilibrium Boltzmann 

form, f = esp(-E/T), we can compute the collision integral on the r.1i.s. of equation (6) 

analytically in the massless limit. For esample, the matris element for a t-channel reaction 

in (5) gives 

G(y = O)nrs = 
G;m;Ti 

16Tj {(cv + c,4)' + g,/ - c/#} 

We have also computed the collision integrals numerically retaining the effect Fermi statistics,* 

and found a 21% suppression relative to the case of Boltzmann statistics. Furthermore, it 

was found that this suppression is nearly the same for all the reactions. 

We took into account the following scattering processes: v,-V, --+ up+ue, vp-ucl + 

u,,+v,, vp-uT - v~+Y,, up-e- --) u/,+-e-, up-p- ---) v~+JL-, with the corresponding channels 

for scattering off antiparticles and the annihilation channels. Similar channels exist also 

for v,+-production. However, the reaction channels involving muons are different, due to 

the contribution from charged current scattering. Moreover, in the muonic case there are 

three more pure charged current channels that do not exist for v,+-production: ,Y-u, -+ 

++C P - e + + u,,+v;, and e+v, --) v,+/J+. There is also a contribution from scattering off 

of pions, which we found to be small and will be neglected. 

Equation (7), modified to include Fermi statistics, can be used for all relevant reaction 

channels except for those involving muons. For the muonic channels we computed the colli- 

sion integrals numerically as a function of temperature. -4ltogether we can write the kinetic 

equation as 

@u -t4Hp,= gCFNeRTi, (8) 

where the Fermi correction factor cF N O.i9 and the effective number of reactions N,R 
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(normalized such that t-channel scatt,ering off neutrinos gives a contribution 1). for example 

in v,-case is given by 

Xff., = @.{1+ c (~~,/+C:f)+(CZ~+C~~+2)d~(T)}. 
f =e.ve ,vr 

(9) 

The first ‘1’ comes from scattering off of muonic neutrinos and cvP = 2 sin’ fJu7 + 4, cAP = .$ 

(see also below equation (2)). Using sin’ Bl,l = 0.23, we find 

x& z 3.92( 1 + 0.81&(T)) 

rvefi,r ‘v 3.92( 1 + O.OGcl,( T)), (10) 

where the fit functions di(T) are normalized to become unity for very large T. The sup- 

pression due to the muon mass becomes significant rather late: for T = mP/3 we still get 

d ,, z 0.42 and cl, z 0.35. Hence the muonic interactions are important in deriving the mass 

bounds. For T = 7nP/10 however, we find d ,, N 4.7 x 10m3, which clearly validates our neglect 

‘of reactions involving 7s. 
, 

If all the particles in the plasma were massless we could easily integrate the equations 

(S-10) since in this case the temperature and the time are related as T*t = const. However, 

since the contribution of massive pions and muons to the energy density is essential, we 

should proceed more carefully. If we neglect the tiny contribution to the pressure density p 

coming from the wrong helicity states, the covariant energy conservation law p = -3H(p+p) 

reduces to the usual conservation of entropy of interacting species, and we get the standard 

relation between time and temperature [14] 

dt 
dT= (11) 

Here g* and h, are the effective numbers of energy and entropy degrees of freedom, defined 

through the total energy density p z $g*(T)r* 

SI E y$l.(T)T3. 

and the entropy density of interacting species 

Equations (8- 11) are easily solved to yield a simple integral expression for the relative 

energy density ~1 E pv+/pv- = p,+/(7~~‘7’*/240): 

r1 = 2.88 ($)‘I”““dT (s)“” ($$)“* (1 + $3) (1 +aidj(T)). (12) 
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Sub-l means that we take into accomlt’ onl?- weal; scatterings: pion decays are treated sep- 

arately- below. TQC~ is the tempera.ture of the QCD phase transition and the coefficients ai 

can be read off the equation (lo), uP = O.Sl and LI, = 0.06. Equation (12) incorporates the 

effect of the changing energy density due to anxrihilations of heavy particles, as well as the 

statement of entropy conservation. We have integrated (12) numerically and found that (for 

TQCD cv > 100) to a very good accuracy r‘,s follow the simple linear fits 

)‘lp = (0.53 + 2.25 T$,D,) (na,/MeV) 

I’lT = (0.0s + 1.34 Tg:D) (na,/MeV), (13) 

where T$$, is the QCD phase transition t,eniperature in units 100 MeV. A word of caution 

is in order here: In equation (12) we assumed that y, and h, reach a constant value 17.25 

well above pion mass. This indeed seems to be the correct choice (141, but should they 

instead increase significantly at temperatures between nz, and TQ~D, then equations (13) 

would slightly overestimate ri for T&n 2 O(200) MeV. 

The decays no + vii and x* -+ ,!.Lu~ also give significant contributions to the energy 

density of right-handed neutrinos. The decay of r” produces both ucl and v, while 7r* 

produces only vP. The former was considered in ref. [9] while the latter, to best of our 

knowledge, has not been accounted for to date. Both of these processes have the property 

that their contribution to the energy density is insensitive to the temperature of the QCD 

transition because the dominant contribution to production of the right-handed Y occurs at 

T z m,/5. Let us first consider the decay ?y” 4 u+c+. This width was calculated in ref. 

[15, lG] as 

I’(T’ -+ Y+I?+) = G~f~om~nz,/8x, (14) 

where fnO z 93 MeV. When computing the 7;’ collision term, we will assume the Maxwell- 

Boltzmann statistics. This is an excellent approximation here and moreover we are able 

to compute the collision term analytically. 1\-e find that the energy density of neutrinos 

produced in TO-decays satisfies the equation 

,bv + 4Hp, = 
G’kinZ 2 
~f~0T”x$-2(xa), 
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where x0 z m,o/T and I\-?(x) is the usual modified Bessel function. This equation can be 

integrated analogously- to the scattering contribut~ion (cf. equation (12)) with the result 

1’2 = 1.21(77zv/MeV)2, (16) 

which to the given accuracy is independent of T QCD. Quite similarly we find f& the decay 

7r+ +u+: + l-1 

p,+4Hp”=g f;;‘,T”zz$(l - y’){(l + y’)K&r+) - y*Ko(.r+)j, (17 

where fr* z 128.4, .r+ E m,f/T and y E IIZ,,/~L,*. When integrated, (17) gives 

1’3 = l.l5(nb,/MeV)*. (18) 

At temperatures above the QCD phase transition, the plasma consisted of free quarks 

and gluons in addition to leptons and photons and the effective number of degrees of freedom 

y, was slightly below 60. Since the efficiency of production of right-handed neutrinos is larger’ 

at higher temperatures (at least up to the temperatures of the order of the W and 2 boson 

masses) we espect them t.o be in thermal equilibrium if their mass is above O(10) KeV. The 

energy density of these neutrinos will be dilutecl in the course of QCD-phase transition and 

due to amlihilation of massive states in the plasma. Using the entropy conservation we may 

estimate their relative energy density as 

TQCD = (10.75/60)4’3 -N 0.10. (19) 

There is one additional effect that needs to be taken into account. Namely, the fact 

that energy density of a massive species will scale differently than that of a massless species. 

Thus, the there will be additional contributions to the relative energy density coming from 

population of left handed neutrinos as well as the small population of right handed neutrinos. 

Therefore, the total relative energy density may be written as 

Ttot .v = f(mv) + (1 f‘i.v + 0.1) (1 + f(mv)). (20) 
i 

The function f(nzy) was found using the results from paper [G], and is given by 

f(m,) = 1.3lnzZ + 4.847724, - 4.57on6, E 1.3lmZ + 6f, (21) 
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and 171, is gi\-en in units of MeV. In this way we find the bounds 

( 

Ak1”“” _ 0.10 _ 6 112 
llE,# < 

4.33 + 2.25T(g( ) 
MeV, (22) 

AkFax - 0.10 - 6, “* 
1?& < 

2.73 + 1.34T&$ 
MeV, 

I 

where C;, = 1.106f + (2.S9 + 2.25T&‘&)f and 6, = l.lOC;f + (1.29 + 

smallness of 6, ++ 0( JILL), the constraint equations (22) and (23) are 

values of 1k, and TQCD. For example, imposing the constraint Jk, < 

bounds 

mvr 2. 
{ 

170 KeV TQCD = 100 MeV 
150 KeV TQCD = 200 MeV 

m”, s 
210 KeV TQCD = 100 MeV 
190 KeV TQCD = 200 MeV. 

1.34T$‘o)f. Due to 

easily solved for any 

0.3 [li), leads to the 

(24) 

(25) ’ 

Let us finally mention that there were claims recently that the effective number of extra 

neutrino species is not larger than 0.1 [IS]. If this is indeed the case the right-handed 

neutrinos sl~oulcl decouple before or near electroweak phase transition. Using this bound the 

limit on both the u, and up masses is, conservatively, 10 KeV. 

A.D.Dolgov is grateful for hospitality to the Department of Physics of University of 

Michigan where this work started, and to the Astrophysics Group at Fermilab for their 

hospitality and where it was finished with support by the DOE and NASA under grant 

NAGS-2381. 1C.K. wishes to thank the Finnish Academy for financial support. This research 

is supported by the DOE grant DE-AC0243ER30105. 

(23) 



References 

[l] S.S. Gerstein and Ya.B. Zeldovich, Zh. Eksp. Teor. Fiz. Pis’ma 4, 1’74 (1972). 

RCowsik and J. McClelland, Phys. Rev. Lett. 29, 669 (1972). 

[2] P. Hut. Ph>s. Lett. G9B, 85 (1977); I<. Sato and H. Iiobayashi, Prog. Theor. Phys. 58, 

1775 ( 1977): B.W. Lee and S. Weinberg Phys. Rev. Lett. 39, 165 (1977); M.I. Vysotsky. 

A.D. Dolgov and Ya.B. Zeldovich, JETP Lett. 26, 188 (1977). 

[3] I<. .\ssamsan et. al. PSI-PR-94-19. 

[J] XRGUS Collab., H. Albrecht et. al., Phys Lett B292, 221 (1992). 

[5] E. Kolb and R. Scherrer Phys. Rev. D25, 1481 (1982); E. Kolb, M.S. Turner, A. Chakra- 

vorty. and D.N. Schramm Phys. Rev. Lett. 67, 533 (1991). 
L 

[G] A.D. Dolgov and 1.2. Rothstein Phys. Rev. Lett. (1993); M. Kawasaki et.al. Nucl. Phys. 

B419,105 (1994); S. Dodelson, G. Gyuk and M.S. Turner, Phys. Rev. D49,5068 (1994). 

[i] I<. Enqvist and H. Uibo Pys. Lett. B 301 (1993) 376. Some of the most efficient reactions 

in (1) were significantly underestimated here, leading to sotnewhat too weak bounds even 

for an analysis relying solely on the decoupling argument. 

[8] G.M. Fuller and R.A. Malaney, Phys. Rev. D43, 3136 (1991). 

[9] W.P. Lam and K-W. Ng, Phys. Rev. D44, 3345 (1991). 

(lo] R. hlayle, D.N. Schramm, M.S. Turner, and J.R. Wilson, Phys. Lett. B317, 119 (1993). 

(111 A. Burrows, R. Ghandi, and M.S. Turner, Phys. Rev. Lett. 68 (1992) 3834. 

(121 K.S. Babu, R.N. Mohapatra and I.Z. Rothstein Phys. Rev. Lett. 67, 545 (1991). 

(131 KS. Babu, R.N. Mohapatra and I.Z. Rothstein Phys. Rev. D45, R3312 (1992). 

(141 M. Srednicki, R. Watkins and K.A. Olive, Nucl. Phys. B310, 693 (1988). 

9 



(151 E. F’ 1 b 1 ISC 1 ac 1, et.al. Pllys. Rev. DlG, 2377 (1977). 

[lG] T. I’ 1 g . 1 ia o elo )oulous, J Schechter, and J. Valle, Phys. Lett. SGB, 72 (1979). 

[l i] T. \V a \er et.al., .kroplq*s. J. 3’76, 51 (1991). ll- 

[18] I<..\. Olive and G. Steigman LWN-TH-1230/94 OSU-TA-G/94 

10 


